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Aromatic Protonation. 6.1 The Rearranged Ion of 
Monoprotonated 1,6-Methano[10]annulene. Evidence for 
the Presence of a Cyclopropylcarbinyl Cation Moiety 

Sir: 

The protonated aromatic hydrocarbon l,6-methano[10]-
annulene (I)2 is, in view of its methano bridge, a potential 
source of cyclopropylcarbinyl cations. We reported that 
treatment of 1 with FSO3H-SbF5-SO2ClF at -120 0C yields 
the stable monocation 2, but that, on raising the temperature 
to —60 0C, the dication 3, containing the cyclopropyldicarbinyl 
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Figure 1. 1H NMR (100 MHz) spectrum (A) and 13C proton noise de­
coupled NMR spectrum (B) of ion 5 in FSO3H-SO2ClF at -60 0C. 

Figure 1, and the chemical shifts, coupling constants, and as­
signments4 are compiled in Table I. 

Both the 1H and 13C NMR spectra show three types of 
signals, viz., the aliphatic ones, those of a disubstituted benzene 
moiety,5 and one of the carbocationic center. Comparison of 
the aliphatic 1H and 13C NMR data with those of, e.g., the 
bisected ions 76 and 87 reveals the presence in 5 of a cyclo­
propylcarbinyl cation moiety. 
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dication moiety 4, is formed.1 A decade ago Winstein and 
Warner reported on the monocation 2, using FSO3H, and 
briefly indicated a slow rearrangement to another species at 
-60 0C.3 We now report on the rearrangement of 2 to the 
stable cation 5, containing the cyclopropylcarbinyl moiety 6. 
Addition of 1 in SO2ClF to a solution of FSO3H-SO2ClF (1:1 
v/v) at ca. -100 0C in an NMR tube resulted in an orange-
colored solution of 2. At -60 0C ion 2 rearranges slowly (in 
~1 h) to ion 5 (dark red), as was established by NMR spec­
troscopy. The 1H and 13C NMR spectra of 5 are shown in 
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The rearrangement of 2 to 5 may be rationalized in terms 
of ring closure (in 2) between C(I) and C(6) after which the 
bridge methano group wanders over the "naphthalenium" 
skeleton probably via a [1,2] and subsequent [1,4] sigmatropic 
shift (see Scheme I), although two subsequent [1,3] shifts 
cannot be ruled out a priori. Quenching of the ion solution of 
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Table I. 'H and 13C NMR Parameters of 5" 

position 

1 
2a 
2b 
3 
4 
5 
6 
7 
8 
9 

10 
11 

5iH 

4.0 (m) 
2.55 (d, t;»10, 2) 
4.50 (t, m; «8, 2) 
4.0 (m) 

10.38 (d, 7) 
4.0 (m) 

7.77 (d, 7) 
8.23 (t,d; 7, 1.5) 
7.82 (t, 7) 
8.11 (d, 7) 

5uc 

43.7 (d, 177) 
63.5 (t, 172 ±2) 

51.7 (d, 191.6) 
221.2 (d, 168.0) 

31.3 (t, 132.4) 
146.3 (s) 
132.2 (d, 166.3) 
146.8 (d, 165.4) 
130.8 (d, 169.0) 
140.1 (d, 169.0) 
133.8 (s) 

0 1H and 13C chemical shifts are in parts per million from external 
Me4Si (capillary). Multiplicities (s = singlet, d = doublet, t = triplet, 
m = multiplet) and coupling constants (7HH and 1JcH in hertz) are 
in parenthesis. 

5 in sodium bicarbonate buffered methanol at —78 0C afforded 
10(13%) and 11 (87%).8 This may be explained by assuming 
an equilibrium between ion 5 and the 1H NMR undetected ion 
99 (thus present for at most 5%), which is therefore very far to 
the side of 5, vide infra. Because of the low basicity of the 
methoxide, the proton abstraction from 5, yielding 10, will be 
slow, whereas the nucleophilic attack on 9, resulting in the 
formation of 11, is considered to be rapid (see Scheme I). 

A close examination of the NMR characteristics of the al­
iphatic signals of 5, of which the cyclopropylcarbinyl cationic 
moiety (6) has a fixed geometry, reveals the following for this 
structural element. Firstly, the H(4) resonance shows a vicinal 
coupling with H(3) (7 = 7 Hz), but not with the H(5) hydro­
gens (7 < 1 Hz). This may be interpreted in terms of a more 
or less flat "naphthalenium" skeleton; i.e. C(5), C(4)H, C(3), 
and C(I) are in one plane. Secondly, C(2) is deshielded relative 
to both C(I) and C(3), and H(2b) is deshielded relative to both 
H(I) and H(3); therefore it can be argued that position 2 
carries some positive charge. [H(2a) is observed at high field 
(8 2.04) because of shielding by the benzene ring]. Thirdly, the 
smaller '7CH value of C(2) H2 (172 ± 2 Hz) compared with 
C(I) H (177 Hz) and the large value of 191 Hz for C(3) H 
indicates both some weakening of the C(2)-C(3) bond and 
some double-bond character of the C(3)-C(4) linkage. Finally, 
it is of interest to note that H(2a) has a vicinal coupling with 
H(I) of ~10 Hz and with H(3) of ~2 Hz, whereas H(2b) has 
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a vicinal coupling with both H(I) and H(3) of 7-8 Hz [the 
geminal coupling constant for C(2) H2 is only ~2 Hz]; these 
phenomena indicate an increase of the H(I)-C(I)-C(2)-
H(2a) dihedral angle, and are also in line with the suggested 
partial positive charge at C(2) and the coupled weakening of 
the C(2)-C(3) bond. 

The proposed geometry of the moiety 6 in ion 5 compares 
with the conformation of the cyclopropylcarbinyl cation 
(C4H7+), which was recently calculated to be only 0.5 kcal 
mol-1 higher in energy than the (most stable) bisected 
form.10 

Further and more detailed work on the cyclopropylcarbinyl 
cation moieties present in ions resulting from protonated an-
nulenes is currently in progress. 
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Formation of Methane and Ethane by Reduction of 
Carbon Monoxide Coordinated through Both Carbon 
and Oxygen on Mg[CpFe(COh]2^THF 

Sir: 

Facile catalytic hydrogenation of carbon monoxide would 
supply a very important step in the conversion of coal into other 
fuel sources. Considerable interest and activity in the homo­
geneous reduction of CO has been shown in recent years, al­
though catalytic systems have been elusive. In our examination 
of reactions of carbon- and oxygen-coordinated CO, we have 
found that the CO coordinated in this manner can be reduced 
to mixtures of methane and ethane under mild conditions on 
the complex Mg [CpFe(CO)2] 2-4THF. 

Homogeneous reductions of carbon monoxide to meth­
ane,1-3 mixtures of alkanes,4-5 methanol,6 and a mixture of 
linear alcohols7 have been observed. Only in Bercaw's zir­
conium system is there an understanding of the steps of the 
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